Abstract
We present the measurement of the projected and redshift-space two-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy active galactic nucleus (AGN) at 2.9 ≤ z ≤ 5.5 ( 1046erg s-1) using the generalized clustering estimator based on phot-z probability distribution functions in addition to any available spec-z. We model the projected 2pcf, estimated using π max = 200 h-1 Mpc with the two-halo term and we derive a bias at z ∼ 3.4 equal to b = , which corresponds to a typical mass of the hosting halos of log M h = h-1 M o. A similar bias is derived using the redshift-space 2pcf, modeled including the typical phot-z error σ z = 0.052 of our sample at z ≥ 2.9. Once we integrate the projected 2pcf up to π max = 200 h-1 Mpc, the bias of XMM and Chandra COSMOS at z = 2.8 used in Allevato et al. is consistent with our results at higher redshifts. The results suggest only a slight increase of the bias factor of COSMOS AGNs at z 3 with the typical hosting halo mass of moderate-luminosity AGNs almost constant with redshift and equal to log M h = at z = 2.8 and log M h = at z ∼ 3.4, respectively. The observed redshift evolution of the bias of COSMOS AGNs implies that moderate-luminosity AGNs still inhabit group-sized halos at z 3, but slightly less massive than observed in different independent studies using X-ray AGNs at z ≤ 2.
Original language | English |
---|---|
Article number | 70 |
Journal | Astrophysical Journal |
Volume | 832 |
Issue number | 1 |
DOIs | |
State | Published - 20 Nov 2016 |
Externally published | Yes |
Keywords
- X-rays: general
- dark matter
- galaxies: active
- large-scale structure of universe
- surveys
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science