Abstract
We study finite N aspects of the O(m) × O(N − m) vector model with quartic interactions in general 2 ≤ d ≤ 6 spacetime dimensions. This model has recently been shown [1, 2] to display the phenomenon of persistent symmetry breaking at a perturbative Wilson-Fisher-like fixed point in d = 4 − ϵ dimensions. The large rank limit of the biconical model displays a conformal manifold and a moduli space of vacua. We find a set of three double trace scalar operators that are respectively irrelevant, relevant and marginal deformations of the conformal manifold in general d. We calculate the anomalous dimensions of the single and multi-trace scalar operators to the first sub-leading order in the large rank expansion. The anomalous dimension of the marginal operator does not vanish in general, indicating that the conformal manifold is lifted at finite N. In the case of equal ranks we are able to derive explicitly the scaling dimensions of various operators as functions of only d.
Original language | English |
---|---|
Article number | 192 |
Journal | Journal of High Energy Physics |
Volume | 2021 |
Issue number | 5 |
DOIs | |
State | Published - May 2021 |
Keywords
- Conformal Field Theory
- Global Symmetries
- Nonperturbative Effects
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics