Abstract
We show that many definitions of stability found in the learning theory literature are equivalent to one another. We distinguish between two families of definitions of stability: distribution-dependent and distribution-independent Bayesian stability. Within each family, we establish equivalences between various definitions, encompassing approximate differential privacy, pure differential privacy, replicability, global stability, perfect generalization, TV stability, mutual information stability, KL-divergence stability, and Rényi-divergence stability. Along the way, we prove boosting results that enable the amplification of the stability of a learning rule. This work is a step towards a more systematic taxonomy of stability notions in learning theory, which can promote clarity and an improved understanding of an array of stability concepts that have emerged in recent years.
Original language | English |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 36 |
State | Published - 2023 |
Event | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States Duration: 10 Dec 2023 → 16 Dec 2023 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing