@inproceedings{f1f503b3ee4c411a8ff2ed995dd41c16,
title = "Textually Pretrained Speech Language Models",
abstract = "Speech language models (SpeechLMs) process and generate acoustic data only, without textual supervision. In this work, we propose TWIST, a method for training SpeechLMs using a warm-start from a pretrained textual language models. We show using both automatic and human evaluations that TWIST outperforms a cold-start SpeechLM across the board. We empirically analyze the effect of different model design choices such as the speech tokenizer, the pretrained textual model, and the dataset size. We find that model and dataset scale both play an important role in constructing better-performing SpeechLMs. Based on our observations, we present the largest (to the best of our knowledge) SpeechLM both in terms of number of parameters and training data. We additionally introduce two spoken versions of the StoryCloze textual benchmark to further improve model evaluation and advance future research in the field. We make speech samples, code and models publicly available.",
author = "Michael Hassid and Tal Remez and Alexis Conneau and Felix Kreuk and Nguyen, {Tu Anh} and Itai Gat and Jade Copet and Alexandre Defossez and Gabriel Synnaeve and Emmanuel Dupoux and Roy Schwartz and Yossi Adi",
note = "Publisher Copyright: {\textcopyright} 2023 Neural information processing systems foundation. All rights reserved.; 37th Conference on Neural Information Processing Systems, NeurIPS 2023 ; Conference date: 10-12-2023 Through 16-12-2023",
year = "2023",
language = "الإنجليزيّة",
series = "Advances in Neural Information Processing Systems",
editor = "A. Oh and T. Neumann and A. Globerson and K. Saenko and M. Hardt and S. Levine",
booktitle = "Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023",
}