Text-Only Training for Image Captioning using Noise-Injected CLIP

David Nukrai, Ron Mokady, Amir Globerson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the task of image-captioning using only the CLIP model and additional text data at training time, and no additional captioned images. Our approach relies on the fact that CLIP is trained to make visual and textual embeddings similar. Therefore, we only need to learn how to translate CLIP textual embeddings back into text, and we can learn how to do this by learning a decoder for the frozen CLIP text encoder using only text. We argue that this intuition is “almost correct” because of a gap between the embedding spaces, and propose to rectify this via noise injection during training. We demonstrate the effectiveness of our approach by showing SOTA zero-shot image captioning across four benchmarks, including style transfer. Code, data, and models are available at https://github.com/DavidHuji/CapDec.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2022
EditorsYoav Goldberg, Zornitsa Kozareva, Yue Zhang
PublisherAssociation for Computational Linguistics (ACL)
Pages4084-4092
Number of pages9
ISBN (Electronic)9781959429432
DOIs
StatePublished - 2022
Event2022 Findings of the Association for Computational Linguistics: EMNLP 2022 - Hybrid, Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2022

Conference

Conference2022 Findings of the Association for Computational Linguistics: EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityHybrid, Abu Dhabi
Period7/12/2211/12/22

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Text-Only Training for Image Captioning using Noise-Injected CLIP'. Together they form a unique fingerprint.

Cite this