Temporal synchronization elicits enhancement of binocular vision functions

Auria Eisen-Enosh, Nairouz Farah, Uri Polat, Yossi Mandel

Research output: Contribution to journalArticlepeer-review

Abstract

Integration of information over the CNS is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia (“lazy eye”), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes’ asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found that the re-synchronization of the ocular input elicited a significant improvement in visual functions, and binocular functions, such as binocular summation and stereopsis, were regained. This phenomenon was also evident in neurophysiological measures. Our results can shed light on other neural processing aspects and might also have translational relevance for the field of training, rehabilitation, and perceptual learning.

Original languageEnglish
Article number105960
JournaliScience
Volume26
Issue number2
DOIs
StatePublished - 17 Feb 2023

Keywords

  • Biological sciences
  • Neuroscience
  • Sensory neuroscience

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Temporal synchronization elicits enhancement of binocular vision functions'. Together they form a unique fingerprint.

Cite this