Abstract
The formation of intricately shaped crystalline minerals by organisms is orchestrated by specialized biomacromolecules. The macromolecules associated with coccoliths, nanometer-sized calcite crystal arrays produced by marine microalgae, can form a distinct calcium-rich phase via macromolecular recognition. Here, we show that this calcium-rich phase can be mineralized into a thin film of single-crystalline calcite by the balanced addition of carbonate ions. Such a crystallization process provides a strategy to direct crystalline products via local interactions between soluble macromolecules and compatible templates.
Original language | English |
---|---|
Pages (from-to) | 7740-7743 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 53 |
Issue number | 55 |
DOIs | |
State | Published - 14 Jul 2017 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Ceramics and Composites
- Metals and Alloys
- Materials Chemistry
- Surfaces, Coatings and Films
- Catalysis