TY - GEN
T1 - Teamwork with limited knowledge of teammates
AU - Barrett, Samuel
AU - Stone, Peter
AU - Kraus, Sarit
AU - Rosenfeld, Avi
N1 - Place of conference:USA
PY - 2013
Y1 - 2013
N2 - While great strides have been made in multiagent teamwork, existing approaches typically assume extensive information exists about teammates and how to coordinate actions. This paper addresses how robust teamwork can still be created even if limited or no information exists about a specific group of teammates, as in the ad hoc teamwork scenario. The main contribution of this paper is the first empirical evaluation of an agent cooperating with teammates not created by the authors, where the agent is not provided expert knowledge of its teammates. For this purpose, we develop a general purpose teammate modeling method and test the resulting ad hoc team agent's ability to collaborate with more than 40 unknown teams of agents to accomplish a benchmark task. These agents were designed by people other than the authors without these designers planning for the ad hoc teamwork setting. A secondary contribution of the paper is a new transfer learning algorithm, TwoStageTransfer, that can improve results when the ad hoc team agent does have some limited observations of its current teammates.
AB - While great strides have been made in multiagent teamwork, existing approaches typically assume extensive information exists about teammates and how to coordinate actions. This paper addresses how robust teamwork can still be created even if limited or no information exists about a specific group of teammates, as in the ad hoc teamwork scenario. The main contribution of this paper is the first empirical evaluation of an agent cooperating with teammates not created by the authors, where the agent is not provided expert knowledge of its teammates. For this purpose, we develop a general purpose teammate modeling method and test the resulting ad hoc team agent's ability to collaborate with more than 40 unknown teams of agents to accomplish a benchmark task. These agents were designed by people other than the authors without these designers planning for the ad hoc teamwork setting. A secondary contribution of the paper is a new transfer learning algorithm, TwoStageTransfer, that can improve results when the ad hoc team agent does have some limited observations of its current teammates.
UR - http://www.scopus.com/inward/record.url?scp=84893367330&partnerID=8YFLogxK
M3 - منشور من مؤتمر
SN - 9781577356158
T3 - Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013
SP - 102
EP - 108
BT - Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013
T2 - 27th AAAI Conference on Artificial Intelligence, AAAI 2013
Y2 - 14 July 2013 through 18 July 2013
ER -