Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI

Dingzhu Wen, Peixi Liu, Guangxu Zhu, Yuanming Shi, Jie Xu, Yonina C. Eldar, Shuguang Cui

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper studies a new multi-device edge artificial-intelligent (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC) to enable low-latency intelligent services at the network edge. In this system, multiple ISAC devices perform radar sensing to obtain multi-view data, and then offload the quantized version of extracted features to a centralized edge server, which conducts model inference based on the cascaded feature vectors. Under this setup and by considering classification tasks, we measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain, which is defined as the distance of two classes in the Euclidean feature space under normalized covariance. To maximize the discriminant gain, we first quantify the influence of the sensing, computation, and communication processes on it with a derived closed-form expression. Then, an end-to-end task-oriented resource management approach is developed by designing an optimal integrated sensing, computation, and communication (ISCC) scheme. By using human motions recognition as a concrete AI inference task, extensive experiments are conducted to verify the performance of the proposed scheme.

Original languageEnglish
Title of host publicationICC 2023 - IEEE International Conference on Communications
Subtitle of host publicationSustainable Communications for Renaissance
EditorsMichele Zorzi, Meixia Tao, Walid Saad
Pages3608-3613
Number of pages6
ISBN (Electronic)9781538674628
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Communications, ICC 2023 - Rome, Italy
Duration: 28 May 20231 Jun 2023

Publication series

NameIEEE International Conference on Communications
Volume2023-May
ISSN (Print)1550-3607

Conference

Conference2023 IEEE International Conference on Communications, ICC 2023
Country/TerritoryItaly
CityRome
Period28/05/231/06/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI'. Together they form a unique fingerprint.

Cite this