TY - JOUR
T1 - Tablets and Apps for Promoting Nanoliteracy in Early Childhood Education
T2 - Results from an Experimental Study
AU - Dorouka, Pandora
AU - Kalogiannakis, Michail
AU - Blonder, Ron
N1 - Publisher Copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2024.
PY - 2024/7/9
Y1 - 2024/7/9
N2 - Successful integration of digital technologies in the education of young children still needs to be solved. Despite a growing body of research focusing on learning through digital technologies in childhood, there are areas of knowledge where the impact of digital technologies has yet to be explored. A prominent example is nanoscience and nanotechnology (NST), a new interdisciplinary field that promises to solve long-standing global challenges. Considering that NST concerns elements that cannot be observed with the naked eye, their understanding by young children requires appropriate teaching methods. These distinctive aspects of NST align well with the capabilities of smart mobile devices, the critical feature of which is their ability to display interactive simulations and playful visualizations. This study investigates and compares the effect of using tablets and alternative experiential teaching on developing the ability to understand nanoscale elements. To implement the research, we conducted a week-long intervention, including experimental and control groups. Children in the experimental group participated in a nanoteaching session during the school curriculum, using educational software on tablets. The children in the control group participated in a precisely similar instruction but without using technology. To assess the children’s performance, the Nanoscale Elementary Knowledge Comprehension Test (TENANO) created for the needs of this study was used. The sample consisted of 101 s-grade primary school children in Greece. The results showed that teaching with tablets compared to alternative experiential teaching contributed significantly to developing young children’s nanoliteracy level. Moreover, gender and non-verbal cognitive ability did not seem to differentiate the development of children’s ability to understand nanoscale entities.
AB - Successful integration of digital technologies in the education of young children still needs to be solved. Despite a growing body of research focusing on learning through digital technologies in childhood, there are areas of knowledge where the impact of digital technologies has yet to be explored. A prominent example is nanoscience and nanotechnology (NST), a new interdisciplinary field that promises to solve long-standing global challenges. Considering that NST concerns elements that cannot be observed with the naked eye, their understanding by young children requires appropriate teaching methods. These distinctive aspects of NST align well with the capabilities of smart mobile devices, the critical feature of which is their ability to display interactive simulations and playful visualizations. This study investigates and compares the effect of using tablets and alternative experiential teaching on developing the ability to understand nanoscale elements. To implement the research, we conducted a week-long intervention, including experimental and control groups. Children in the experimental group participated in a nanoteaching session during the school curriculum, using educational software on tablets. The children in the control group participated in a precisely similar instruction but without using technology. To assess the children’s performance, the Nanoscale Elementary Knowledge Comprehension Test (TENANO) created for the needs of this study was used. The sample consisted of 101 s-grade primary school children in Greece. The results showed that teaching with tablets compared to alternative experiential teaching contributed significantly to developing young children’s nanoliteracy level. Moreover, gender and non-verbal cognitive ability did not seem to differentiate the development of children’s ability to understand nanoscale entities.
UR - http://www.scopus.com/inward/record.url?scp=85197739411&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/s10956-024-10132-w
DO - https://doi.org/10.1007/s10956-024-10132-w
M3 - مقالة
SN - 1059-0145
VL - 33
SP - 910
EP - 927
JO - Journal of Science Education and Technology
JF - Journal of Science Education and Technology
IS - 6
ER -