Abstract
Epigenetic modifications control the stability and translation of mRNA molecules. Here, we present a microscopy-based platform for quantifying modified RNA molecules and for relating the modification patterns to single-cell phenotypes. We directly capture mRNAs from cell lysates on oligo-dT-coated coverslips, then visually detect and sequence individual m6A-immunolabled transcripts without amplification. Integration of a nanoscale device enabled us to isolate single cells on the platform, and thereby relate single-cell m6A modification states to gene expression signatures and cell surface markers. Application of the platform to MUTZ3 leukemia cells revealed a marked reduction in cellular m6A levels as CD34+ leukemic progenitors differentiate to CD14+ myeloid cells. We then coupled single-molecule m6A detection with fluorescence in situ hybridization (FISH) to relate mRNA and m6A levels of individual genes to single-cell phenotypes. This single-cell multi-modal assay suite can empower investigations of RNA modifications in rare populations and single cells.
| Original language | English |
|---|---|
| Article number | 100061 |
| Journal | Cell Reports Methods |
| Volume | 1 |
| Issue number | 5 |
| DOIs | |
| State | Published - 27 Sep 2021 |
All Science Journal Classification (ASJC) codes
- Genetics
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- Biochemistry
- Radiology Nuclear Medicine and imaging
- Biotechnology
- Computer Science Applications