Abstract
This study addresses the question of whether chemically deposited PbS thin films grown on GaAs(111) are affected by the oppositely terminated substrate surfaces, gallium terminated GaAs(111)A and arsenic terminated GaAs(111)B. The differences in PbS film deposition pathway in both cases of substrate surface termination were investigated using X-ray photoelectron spectroscopy (XPS), Raman scattering, and contact potential difference (CPD) measurements. The morphology, microstructure, and crystallographic orientation of the films were studied using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. XPS and CPD measurements indicated that PbS films deposited on oppositely terminated GaAs(111) surfaces possessed corresponding surface terminations, with PbS(111)B obtained on GaAs(111)B and PbS(111)A on GaAs(111)A. Subsequently, different surface oxides were detected by XPS on A and B terminated PbS(111), with lead oxide obtained on PbS(111)A and PbSO3 obtained on PbS(111)B. Moreover, CPD measurements revealed that PbS(111)A shows a 40 mV smaller work function than PbS(111)B surfaces, therefore emphasizing the importance of polarity and surface termination control for heterojunction based electronic devices.
Original language | American English |
---|---|
Pages (from-to) | 16501-16508 |
Number of pages | 8 |
Journal | Journal of Physical chemistry c |
Volume | 115 |
Issue number | 33 |
DOIs | |
State | Published - 25 Aug 2011 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Energy
- Surfaces, Coatings and Films
- Physical and Theoretical Chemistry