Supervised learning of bag-of-features shape descriptors using sparse coding

Roee Litman, Alex Bronstein, Michael Bronstein, Umberto Castellani

Research output: Contribution to journalArticlepeer-review

Abstract

We present a method for supervised learning of shape descriptors for shape retrieval applications. Many content-based shape retrieval approaches follow the bag-of-features (BoF) paradigm commonly used in text and image retrieval by first computing local shape descriptors, and then representing them in a 'geometric dictionary' using vector quantization. A major drawback of such approaches is that the dictionary is constructed in an unsupervised manner using clustering, unaware of the last stage of the process (pooling of the local descriptors into a BoF, and comparison of the latter using some metric). In this paper, we replace the clustering with dictionary learning, where every atom acts as a feature, followed by sparse coding and pooling to get the final BoF descriptor. Both the dictionary and the sparse codes can be learned in the supervised regime via bi-level optimization using a task-specific objective that promotes invariance desired in the specific application. We show significant performance improvement on several standard shape retrieval benchmarks.

Original languageEnglish
Pages (from-to)127-136
Number of pages10
JournalComputer Graphics Forum
Volume33
Issue number5
DOIs
StatePublished - Aug 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Geometry and Topology
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Supervised learning of bag-of-features shape descriptors using sparse coding'. Together they form a unique fingerprint.

Cite this