Abstract
We study a model of a composite system constructed from a "pairing layer" of disconnected attractive-U Hubbard sites that is coupled by single-particle tunneling, t, to a disordered metallic layer. For small interlayer tunneling the system is described by an effective long-range XY phase model whose critical temperature, T c, is essentially insensitive to the disorder and is exponentially suppressed by quantum fluctuations. T c reaches a maximum for intermediate values of t, which we calculate using a combination of mean-field, classical, and quantum Monte Carlo methods. The maximal T c scales as a fraction of the zero-temperature gap of the attractive sites when U is smaller than the metallic bandwidth, and is bounded by the maximal T c of the two-dimensional attractive Hubbard model for large U. Our results indicate that a thin, rather than a thick, metallic coating is better suited for the enhancement of T c at the surface of a phase fluctuating superconductor.
Original language | English |
---|---|
Article number | 134531 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 86 |
Issue number | 13 |
DOIs | |
State | Published - 31 Oct 2012 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics