Abstract
We introduce special states for light in multimode waveguides featuring strongly enhanced or reduced spectral correlations in the presence of strong mode coupling. Based on the experimentally measured multispectral transmission matrix of a multimode fiber, we generate a set of states that outperform the established "principal modes" in terms of the spectral stability of their output spatial field profiles. Inverting this concept also allows us to create states with a minimal spectral correlation width, whose output profiles are considerably more sensitive to a frequency change than typical input wave fronts. The resulting "superprincipal-modes" and "anti-principal-modes" are made orthogonal to each other even in the presence of mode-dependent loss. By decomposing them in the principal-mode basis, we show that the super-principal-modes are formed via interference of principal modes with close delay times, whereas the anti-principal-modes are a superposition of principal modes with the most-different delay times available in the fiber. Such novel states are expected to have broad applications in fiber communication, imaging, and spectroscopy.
Original language | English |
---|---|
Article number | 041053 |
Journal | Physical Review X |
Volume | 7 |
Issue number | 4 |
DOIs | |
State | Published - 30 Nov 2017 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy