Abstract
Propagating light beams with widths down to and below the optical wavelength require bulky large-aperture lenses and remain focused only for micrometric distances. Here, we report the observation of light beams that violate this localization/depth-of-focus law by shrinking as they propagate, allowing resolution to be maintained and increased over macroscopic propagation lengths. In nanodisordered ferroelectrics we observe a non-paraxial propagation of a sub-micrometre-sized beam for over 1,000 diffraction lengths, the narrowest visible beam reported to date. This unprecedented effect is caused by the nonlinear response of a dipolar glass, which transforms the leading optical wave equation into a Klein-Gordon-type equation that describes a massive particle field. Our findings open the way to high-resolution optics over large depths of focus, and a route to merging bulk optics into nanodevices.
Original language | English |
---|---|
Pages (from-to) | 228-232 |
Number of pages | 5 |
Journal | Nature Photonics |
Volume | 9 |
Issue number | 4 |
DOIs | |
State | Published - 31 Mar 2015 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics