TY - GEN
T1 - Submodular Maximization Subject to Matroid Intersection on the Fly
AU - Feldman, Moran
AU - Norouzi-Fard, Ashkan
AU - Svensson, Ola
AU - Zenklusen, Rico
N1 - Publisher Copyright: © 2022 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Despite a surge of interest in submodular maximization in the data stream model, there remain significant gaps in our knowledge about what can be achieved in this setting, especially when dealing with multiple constraints. In this work, we nearly close several basic gaps in submodular maximization subject to k matroid constraints in the data stream model. We present a new hardness result showing that super polynomial memory in k is needed to obtain an o(k/log k)-approximation. This implies near optimality of prior algorithms. For the same setting, we show that one can nevertheless obtain a constant-factor approximation by maintaining a set of elements whose size is independent of the stream size. Finally, for bipartite matching constraints, a well-known special case of matroid intersection, we present a new technique to obtain hardness bounds that are significantly stronger than those obtained with prior approaches. Prior results left it open whether a 2-approximation may exist in this setting, and only a complexity-theoretic hardness of 1.91 was known. We prove an unconditional hardness of 2.69.
AB - Despite a surge of interest in submodular maximization in the data stream model, there remain significant gaps in our knowledge about what can be achieved in this setting, especially when dealing with multiple constraints. In this work, we nearly close several basic gaps in submodular maximization subject to k matroid constraints in the data stream model. We present a new hardness result showing that super polynomial memory in k is needed to obtain an o(k/log k)-approximation. This implies near optimality of prior algorithms. For the same setting, we show that one can nevertheless obtain a constant-factor approximation by maintaining a set of elements whose size is independent of the stream size. Finally, for bipartite matching constraints, a well-known special case of matroid intersection, we present a new technique to obtain hardness bounds that are significantly stronger than those obtained with prior approaches. Prior results left it open whether a 2-approximation may exist in this setting, and only a complexity-theoretic hardness of 1.91 was known. We prove an unconditional hardness of 2.69.
KW - Matroid Intersection
KW - Streaming Algorithms
KW - Submodular Maximization
UR - http://www.scopus.com/inward/record.url?scp=85137548687&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ESA.2022.52
DO - 10.4230/LIPIcs.ESA.2022.52
M3 - Conference contribution
T3 - Leibniz International Proceedings in Informatics, LIPIcs
SP - 52:1-52:14
BT - 30th Annual European Symposium on Algorithms, ESA 2022
A2 - Chechik, Shiri
A2 - Navarro, Gonzalo
A2 - Rotenberg, Eva
A2 - Herman, Grzegorz
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 30th Annual European Symposium on Algorithms, ESA 2022
Y2 - 5 September 2022 through 9 September 2022
ER -