TY - GEN
T1 - Submodular Maximization in Clean Linear Time
AU - Li, Wenxin
AU - Feldman, Moran
AU - Kazemi, Ehsan
AU - Karbasi, Amin
N1 - Publisher Copyright: © 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - In this paper, we provide the first deterministic algorithm that achieves 1/2-approximation for monotone submodular maximization subject to a knapsack constraint, while making a number of queries that scales only linearly with the size of the ground set n. Moreover, our result automatically paves the way for developing a linear-time deterministic algorithm that achieves the tight 1 − 1/e approximation guarantee for monotone submodular maximization under a cardinality (size) constraint. To complement our positive results, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no deterministic or randomized algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than Ω(n/log(n)) function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a p-set system and multiple knapsack constraints. Finally, we evaluate the performance of our algorithms on multiple real-life applications, including movie recommendation, location summarization, Twitter text summarization, and video summarization.
AB - In this paper, we provide the first deterministic algorithm that achieves 1/2-approximation for monotone submodular maximization subject to a knapsack constraint, while making a number of queries that scales only linearly with the size of the ground set n. Moreover, our result automatically paves the way for developing a linear-time deterministic algorithm that achieves the tight 1 − 1/e approximation guarantee for monotone submodular maximization under a cardinality (size) constraint. To complement our positive results, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no deterministic or randomized algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than Ω(n/log(n)) function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a p-set system and multiple knapsack constraints. Finally, we evaluate the performance of our algorithms on multiple real-life applications, including movie recommendation, location summarization, Twitter text summarization, and video summarization.
UR - http://www.scopus.com/inward/record.url?scp=85148272441&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -