TY - JOUR
T1 - Structural and Physical Parameters Controlling the Oxygen Reduction Reaction Selectivity with Carboxylic Acid-Substituted Cobalt Corroles Incorporated in a Porous Carbon Support
AU - Honig, Hilah C.
AU - Krishnamurthy, Chethana B.
AU - Borge-Durán, Ignacio
AU - Tasior, Mariusz
AU - Gryko, Daniel T.
AU - Grinberg, Ilya
AU - Elbaz, Lior
N1 - Publisher Copyright: Copyright © 2019 American Chemical Society.
PY - 2019/10/31
Y1 - 2019/10/31
N2 - Three cobalt(III) complexes of regioisomeric trans-A2B-corroles were designed and efficiently synthesized. The corroles were adsorbed on smooth glassy carbon (GC) and black pearls 2000 (BP2000), high-surface-area carbon. Albeit spatially separated from the cobalt reaction center, the position of COOH group has a profound influence on the oxygen reduction reaction electrocatalytic reactivity when on GC, whereas on BP2000, a significant increase in selectivity toward the 4-electron reduction was observed in an alkaline environment. This is attributed to the wetting properties of the hydrophobic pores of BP2000, which considerably lower the dielectric constant in the pore water environment, stabilize the charged OOH- intermediate, and favor the 4-electron reduction pathway with the cobalt-bis-pentafluorophenyl (phenyl-para-carboxylic acid), when compared to analogous corroles with the COOH group at the ortho- A nd meta-positions.
AB - Three cobalt(III) complexes of regioisomeric trans-A2B-corroles were designed and efficiently synthesized. The corroles were adsorbed on smooth glassy carbon (GC) and black pearls 2000 (BP2000), high-surface-area carbon. Albeit spatially separated from the cobalt reaction center, the position of COOH group has a profound influence on the oxygen reduction reaction electrocatalytic reactivity when on GC, whereas on BP2000, a significant increase in selectivity toward the 4-electron reduction was observed in an alkaline environment. This is attributed to the wetting properties of the hydrophobic pores of BP2000, which considerably lower the dielectric constant in the pore water environment, stabilize the charged OOH- intermediate, and favor the 4-electron reduction pathway with the cobalt-bis-pentafluorophenyl (phenyl-para-carboxylic acid), when compared to analogous corroles with the COOH group at the ortho- A nd meta-positions.
UR - http://www.scopus.com/inward/record.url?scp=85074212073&partnerID=8YFLogxK
U2 - https://doi.org/10.1021/acs.jpcc.9b07333
DO - https://doi.org/10.1021/acs.jpcc.9b07333
M3 - مقالة
SN - 1932-7447
VL - 123
SP - 26351
EP - 26357
JO - Journal of Physical chemistry c
JF - Journal of Physical chemistry c
IS - 43
ER -