Strong proofs of knowledge

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

The concept of proofs-of-knowledge, introduced in the seminal paper of Goldwasser, Micali and Rackoff, plays a central role in various cryptographic applications. An adequate formulation, which enables modular applications of proofs of knowledge inside other protocols, was presented by Bellare and Goldreich. However, this formulation depends in an essential way on the notion of expected (rather than worst-case) running-time. Here we present a seemingly more restricted notion that maintains the main feature of the prior definition while referring only to machines that run in strict probabilistic polynomial-time (rather than to expected polynomial-time).

Original languageEnglish
Title of host publicationStudies in Complexity and Cryptography
Subtitle of host publicationMiscellanea on the Interplay between Randomness and Computation
EditorsOded Goldreich
Chapter7
Pages54-58
Number of pages5
DOIs
StatePublished - 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume6650 LNCS

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Strong proofs of knowledge'. Together they form a unique fingerprint.

Cite this