Stress resilience is established during development and is regulated by complement factors

Amrutha Swaminathan, Michael Gliksberg, Savani Anbalagan, Noa Wigoda, Gil Levkowitz

Research output: Contribution to journalArticlepeer-review

Abstract

Individuals in a population respond differently to stressful situations. While resilient individuals recover efficiently, others are susceptible to the same stressors. However, it remains challenging to determine if resilience is established as a trait during development or acquired later in life. Using a behavioral paradigm in zebrafish larvae, we show that resilience is a stable and heritable trait, which is determined and exhibited early in life. Resilient larvae show unique stress-induced transcriptional response, and larvae with mutations in resilience-associated genes, such as neuropeptide Y and miR218, are less resilient. Transcriptome analysis shows that resilient larvae downregulate multiple factors of the innate immune complement cascade in response to stress. Perturbation of critical complement factors leads to an increase in resilience. We conclude that resilience is established as a stable trait early during development and that neuropeptides and the complement pathway play positive and negative roles in determining resilience, respectively.

Original languageEnglish
Article number111973
Number of pages17
JournalCell Reports
Volume42
Issue number1
DOIs
StatePublished - 31 Jan 2023

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Stress resilience is established during development and is regulated by complement factors'. Together they form a unique fingerprint.

Cite this