Statistical Estimation from Dependent Data

Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, Surbhi Goel, Vardis Kandiros

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider a general statistical estimation problem wherein binary labels across different observations are not independent conditioned on their feature vectors, but dependent, capturing settings where e.g. these observations are collected on a spatial domain, a temporal domain, or a social network, which induce dependencies. We model these dependencies in the language of Markov Random Fields and, importantly, allow these dependencies to be substantial, i.e. do not assume that the Markov Random Field capturing these dependencies is in high temperature. As our main contribution we provide algorithms and statistically efficient estimation rates for this model, giving several instantiations of our bounds in logistic regression, sparse logistic regression, and neural network settings with dependent data. Our estimation guarantees follow from novel results for estimating the parameters (i.e. external fields and interaction strengths) of Ising models from a single sample. We evaluate our estimation approach on real networked data, showing that it outperforms standard regression approaches that ignore dependencies, across three text classification datasets: Cora, Citeseer and Pubmed.

Original languageEnglish
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages5269-5278
Number of pages10
ISBN (Electronic)9781713845065
StatePublished - 2021
Externally publishedYes
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: 18 Jul 202124 Jul 2021

Publication series

NameProceedings of Machine Learning Research
Volume139

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period18/07/2124/07/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Statistical Estimation from Dependent Data'. Together they form a unique fingerprint.

Cite this