TY - GEN
T1 - State of the Art in Surface Reconstruction from Point Clouds
AU - Berger, Matthew
AU - Tagliasacchi, Andrea
AU - Seversky, Lee M.
AU - Alliez, Pierre
AU - Levine, Joshua A.
AU - Sharf, Andrei
AU - Silva, Cláudio T.
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2014
Y1 - 2014
N2 - The area of surface reconstruction has seen substantial progress in the past two decades. The traditional problem addressed by surface reconstruction is to recover the digital representation of a physical shape that has been scanned, where the scanned data contains a wide variety of defects. While much of the earlier work has been focused on reconstructing a piece-wise smooth representation of the original shape, recent work has taken on more specialized priors to address significantly challenging data imperfections, where the reconstruction can take on different representations -- not necessarily the explicit geometry. This state-of-the-art report surveys the field of surface reconstruction, providing a categorization with respect to priors, data imperfections, and reconstruction output. By considering a holistic view of surface reconstruction, this report provides a detailed characterization of the field, highlights similarities between diverse reconstruction techniques, and provides directions for future work in surface reconstruction.
AB - The area of surface reconstruction has seen substantial progress in the past two decades. The traditional problem addressed by surface reconstruction is to recover the digital representation of a physical shape that has been scanned, where the scanned data contains a wide variety of defects. While much of the earlier work has been focused on reconstructing a piece-wise smooth representation of the original shape, recent work has taken on more specialized priors to address significantly challenging data imperfections, where the reconstruction can take on different representations -- not necessarily the explicit geometry. This state-of-the-art report surveys the field of surface reconstruction, providing a categorization with respect to priors, data imperfections, and reconstruction output. By considering a holistic view of surface reconstruction, this report provides a detailed characterization of the field, highlights similarities between diverse reconstruction techniques, and provides directions for future work in surface reconstruction.
U2 - 10.2312/egst.20141040
DO - 10.2312/egst.20141040
M3 - Conference contribution
VL - 1
SP - 161
EP - 185
BT - Eurographics (State of the Art Reports)
ER -