Stable Tuple Embeddings for Dynamic Databases

Jan Toenshoff, Neta Friedman, Martin Grohe, Benny Kimelfeld

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study the problem of computing an embedding of the tuples of a relational database in a manner that is extensible to dynamic changes of the database. In this problem, the embedding should be stable in the sense that it should not change on the existing tuples due to the embedding of newly inserted tuples (as database applications might already rely on existing embeddings); at the same time, the embedding of all tuples, old and new, should retain high quality. This task is challenging since inter-dependencies among the embeddings of different entities are inherent in state-of-the-art embedding techniques for structured data.We study two approaches to solving the problem. The first is an adaptation of Node2Vec to dynamic databases. The second is the FoRWaRD algorithm (Foreign Key Random Walk Embeddings for Relational Databases) that draws from embedding techniques for general graphs and knowledge graphs, and is inherently utilizing the schema and its key and foreign-key constraints. We evaluate the embedding algorithms using a collection of downstream tasks of column prediction over geographical and biological domains. We find that in the traditional static setting, our two embedding methods achieve comparable results that are compatible with the state-of-the-art for the specific applications. In the dynamic setting, we find that the FoRWaRD algorithm generally outperforms and runs faster than the alternatives, and moreover, it features only a mild reduction of quality even when the database consists of more than half newly inserted tuples after the initial training of the embedding.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023
Pages1286-1299
Number of pages14
ISBN (Electronic)9798350322279
DOIs
StatePublished - 2023
Event39th IEEE International Conference on Data Engineering, ICDE 2023 - Anaheim, United States
Duration: 3 Apr 20237 Apr 2023

Publication series

NameProceedings - International Conference on Data Engineering
Volume2023-April

Conference

Conference39th IEEE International Conference on Data Engineering, ICDE 2023
Country/TerritoryUnited States
CityAnaheim
Period3/04/237/04/23

Keywords

  • Database Embedding
  • Node2Vec

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Information Systems

Fingerprint

Dive into the research topics of 'Stable Tuple Embeddings for Dynamic Databases'. Together they form a unique fingerprint.

Cite this