Abstract
We study the dynamics of a quantum system having Hilbert space of finite dimension dH. Instabilities are possible provided that the master equation governing the system's dynamics contain nonlinear terms. Here we consider the nonlinear master equation derived by Grabert. The dynamics near a fixed point is analyzed by using the method of linearization, and by evaluating the eigenvalues of the Jacobian matrix. We find that all these eigenvalues are non-negative, and conclude that the fixed point is stable.
Original language | English |
---|---|
Article number | 052217 |
Journal | Physical Review A |
Volume | 103 |
Issue number | 5 |
DOIs | |
State | Published - May 2021 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics