TY - JOUR
T1 - SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product
AU - Karawacka, Weronika
AU - Janko, Christina
AU - Unterweger, Harald
AU - Mühlberger, Marina
AU - Lyer, Stefan
AU - Taccardi, Nicola
AU - Mokhir, Andriy
AU - Jira, Wolfgang
AU - Peukert, Wolfgang
AU - Boccaccini, Aldo R.
AU - Kolot, Mikhail
AU - Strauss, Richard
AU - Bogdan, Christian
AU - Alexiou, Christoph
AU - Tietze, Rainer
N1 - Publisher Copyright: © 2018 Elsevier B.V.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - Systemic inflammation such as sepsis represents an acute life-threatening condition, to which often no timely remedy can be found. A promising strategy may be to functionalize magnetic nanoparticles with specific peptides, derived from the binding motives of agglutinating salivary proteins, that allow immobilization of pathogens. In this work, superparamagnetic iron oxide nanoparticles with stable polycondensed aminoalkylsilane layer were developed, to which the heterobifunctional linkers N-succinimidyl 3-(2-pyridyldithio)-propanoate (SDPD) and N-succinimidyl bromoacetate (SBA) were bound. These linkers were further chemoselectively reacted with the thiol group of singularly present cysteines of selected peptides. The resulting functional nanoparticles underwent a detailed physicochemical characterization. The biocompatibility of the primarily coated aminoalkylsilane particles was also investigated. To test the pathogen-binding efficacy of the particles, the lipopolysaccharide-immobilization capacity of the peptide-coated particles was compared with free peptides. Here, one particle-bound peptide species succeeded in capturing 90% of the toxin, whereas the degree of immobilization of the toxin with a system that varied in the sequence of the peptide dropped to 35%. With these promising results, we hope to develop extracorporeal magnetic clearance systems for removing pathogens from the human body in order to accelerate diagnosis and alleviate acute disease conditions such as sepsis.
AB - Systemic inflammation such as sepsis represents an acute life-threatening condition, to which often no timely remedy can be found. A promising strategy may be to functionalize magnetic nanoparticles with specific peptides, derived from the binding motives of agglutinating salivary proteins, that allow immobilization of pathogens. In this work, superparamagnetic iron oxide nanoparticles with stable polycondensed aminoalkylsilane layer were developed, to which the heterobifunctional linkers N-succinimidyl 3-(2-pyridyldithio)-propanoate (SDPD) and N-succinimidyl bromoacetate (SBA) were bound. These linkers were further chemoselectively reacted with the thiol group of singularly present cysteines of selected peptides. The resulting functional nanoparticles underwent a detailed physicochemical characterization. The biocompatibility of the primarily coated aminoalkylsilane particles was also investigated. To test the pathogen-binding efficacy of the particles, the lipopolysaccharide-immobilization capacity of the peptide-coated particles was compared with free peptides. Here, one particle-bound peptide species succeeded in capturing 90% of the toxin, whereas the degree of immobilization of the toxin with a system that varied in the sequence of the peptide dropped to 35%. With these promising results, we hope to develop extracorporeal magnetic clearance systems for removing pathogens from the human body in order to accelerate diagnosis and alleviate acute disease conditions such as sepsis.
KW - Magnetic clearence
KW - Pathogen immobilization
KW - Salivary agglutinin peptide
KW - Sepsis
KW - Superparamagnetic iron oxide nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85056483205&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.colsurfb.2018.11.002
DO - https://doi.org/10.1016/j.colsurfb.2018.11.002
M3 - مقالة
C2 - 30445255
SN - 0927-7765
VL - 174
SP - 95
EP - 102
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
ER -