Spin-valley Rashba monolayer laser

Kexiu Rong, Xiaoyang Duan, Bo Wang, Dror Reichenberg, Assael Cohen, Chieh li Liu, Pranab K. Mohapatra, Avinash Patsha, Vladi Gorovoy, Subhrajit Mukherjee, Vladimir Kleiner, Ariel Ismach, Elad Koren, Erez Hasman

Research output: Contribution to journalArticlepeer-review

Abstract

Direct-bandgap transition metal dichalcogenide monolayers are appealing candidates to construct atomic-scale spin-optical light sources owing to their valley-contrasting optical selection rules. Here we report on a spin-optical monolayer laser by incorporating a WS2 monolayer into a heterostructure microcavity supporting high-Q photonic spin-valley resonances. Inspired by the creation of valley pseudo-spins in monolayers, the spin-valley modes are generated from a photonic Rashba-type spin splitting of a bound state in the continuum, which gives rise to opposite spin-polarized ±K valleys due to emergent photonic spin–orbit interaction under inversion symmetry breaking. The Rashba monolayer laser shows intrinsic spin polarizations, high spatial and temporal coherence, and inherent symmetry-enabled robustness features, enabling valley coherence in the WS2 monolayer upon arbitrary pump polarizations at room temperature. Our monolayer-integrated spin-valley microcavities open avenues for further classical and non-classical coherent spin-optical light sources exploring both electron and photon spins.

Original languageEnglish
Pages (from-to)1085-1093
Number of pages9
JournalNature Materials
Volume22
Issue number9
Early online date6 Jul 2023
DOIs
StatePublished - Sep 2023

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Spin-valley Rashba monolayer laser'. Together they form a unique fingerprint.

Cite this