TY - JOUR
T1 - Species Richness, rRNA Gene Abundance, and Seasonal Dynamics of Airborne Plant-Pathogenic Oomycetes
AU - Lang-Yona, Naama
AU - Pickersgill, Daniel A.
AU - Maurus, Isabel
AU - Teschner, David
AU - Wehking, Jörn
AU - Thines, Eckhard
AU - Pöschl, Ulrich
AU - Després, Viviane R.
AU - Fröhlich-Nowoisky, Janine
N1 - Publisher Copyright: ©2018 Lang-Yona, Pickersgill, Maurus, Teschner, Wehking, Thines, Pöschl, Després and Fröhlich-Nowoisky.
PY - 2018/11/15
Y1 - 2018/11/15
N2 - Oomycetes, also named Peronosporomycetes, are one of the most important and widespread groups of plant pathogens, leading to significant losses in the global agricultural productivity. They have been studied extensively in ground water, soil, and host plants, but their atmospheric transport vector is not well characterized. In this study, the occurrence of airborne Oomycetes was investigated by Sanger sequencing and quantitative PCR of coarse and fine aerosol particle samples (57 filter pairs) collected over a 1-year period (2006-2007) and full seasonal cycle in Mainz, Germany. In coarse particulate matter, we found 55 different hypothetical species (OTUs), of which 54 were plant pathogens and 29 belonged to the genus Peronospora (downy mildews). In fine particulate matter (<3 μm), only one species of Hyaloperonospora was found in one sample. Principal coordinate analysis of the species composition revealed three community clusters with a dependence on ambient temperature. The abundance of Oomycetes rRNA genes was low in winter and enhanced during spring, summer, and fall, with a dominance of Phytophthora, reaching a maximum concentration of ∼1.6 × 106 rRNA genes per cubic meter of sampled air in summer. The presence and high concentration of rRNA genes in air suggests that atmospheric transport, which can lead to secondary infection, may be more important than currently estimated. This illustrates the need for more current and detailed datasets, as potential seasonal shifts due to changing meteorological conditions may influence the composition of airborne Oomycetes. An insight into the dynamics of airborne plant pathogens and their major drivers should be useful for improved forecasting and management of related plant diseases.
AB - Oomycetes, also named Peronosporomycetes, are one of the most important and widespread groups of plant pathogens, leading to significant losses in the global agricultural productivity. They have been studied extensively in ground water, soil, and host plants, but their atmospheric transport vector is not well characterized. In this study, the occurrence of airborne Oomycetes was investigated by Sanger sequencing and quantitative PCR of coarse and fine aerosol particle samples (57 filter pairs) collected over a 1-year period (2006-2007) and full seasonal cycle in Mainz, Germany. In coarse particulate matter, we found 55 different hypothetical species (OTUs), of which 54 were plant pathogens and 29 belonged to the genus Peronospora (downy mildews). In fine particulate matter (<3 μm), only one species of Hyaloperonospora was found in one sample. Principal coordinate analysis of the species composition revealed three community clusters with a dependence on ambient temperature. The abundance of Oomycetes rRNA genes was low in winter and enhanced during spring, summer, and fall, with a dominance of Phytophthora, reaching a maximum concentration of ∼1.6 × 106 rRNA genes per cubic meter of sampled air in summer. The presence and high concentration of rRNA genes in air suggests that atmospheric transport, which can lead to secondary infection, may be more important than currently estimated. This illustrates the need for more current and detailed datasets, as potential seasonal shifts due to changing meteorological conditions may influence the composition of airborne Oomycetes. An insight into the dynamics of airborne plant pathogens and their major drivers should be useful for improved forecasting and management of related plant diseases.
KW - Airborne oomycetes
KW - Meteorological parameter
KW - Peronosporomycetes
KW - Plant pathogen
KW - Qpcr analysis
KW - Sanger sequencing
KW - Seasonal distribution
UR - http://www.scopus.com/inward/record.url?scp=85056720378&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2018.02673
DO - 10.3389/fmicb.2018.02673
M3 - مقالة
SN - 1664-302X
VL - 9
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
IS - NOV
M1 - 2673
ER -