Spatial source subtraction based on incomplete measurements of relative transfer function

Zbyněk Koldovský, Jiří Málek, Sharon Gannot

Research output: Contribution to journalArticlepeer-review

Abstract

Relative impulse responses between microphones are usually long and dense due to the reverberant acoustic environment. Estimating them from short and noisy recordings poses a long-standing challenge of audio signal processing. In this paper, we apply a novel strategy based on ideas of compressed sensing. Relative transfer function (RTF) corresponding to the relative impulse response can often be estimated accurately from noisy data but only for certain frequencies. This means that often only an incomplete measurement of the RTF is available. A complete RTF estimate can be obtained through finding its sparsest representation in the time-domain: that is, through computing the sparsest among the corresponding relative impulse responses. Based on this approach, we propose to estimate the RTF from noisy data in three steps. First, the RTF is estimated using any conventional method such as the nonstationarity-based estimator by Gannot et al. or through blind source separation. Second, frequencies are determined for which the RTF estimate appears to be accurate. Third, the RTF is reconstructed through solving a weighted l1 convex program, which we propose to solve via a computationally efficient variant of the SpaRSA (Sparse Reconstruction by Separable Approximation) algorithm. An extensive experimental study with real-world recordings has been conducted. It has been shown that the proposed method is capable of improving many conventional estimators used as the first step in most situations.

Original languageEnglish
Pages (from-to)1335-1347
Number of pages13
JournalIEEE/ACM Transactions on Audio Speech and Language Processing
Volume23
Issue number8
DOIs
StatePublished - 2015

Keywords

  • Compressed sensing
  • Lnorm
  • Relative impulse response
  • Relative transfer function (RTF)
  • Sparse approximations

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Acoustics and Ultrasonics
  • Computational Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spatial source subtraction based on incomplete measurements of relative transfer function'. Together they form a unique fingerprint.

Cite this