TY - GEN
T1 - Sparsifying congested cliques and core-periphery networks
AU - Balliu, Alkida
AU - Fraigniaud, Pierre
AU - Lotker, Zvi
AU - Olivetti, Dennis
N1 - Publisher Copyright: © Springer International Publishing AG 2016.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - The core-periphery network architecture proposed by Avin et al. [ICALP 2014] was shown to support fast computation for many distributed algorithms, while being much sparser than the congested clique. For being efficient, the core-periphery architecture is however bounded to satisfy three axioms, among which is the capability of the core to emulate the clique, i.e., to implement the all-to-all communication pattern, in O(1) rounds in the CONGEST model. In this paper, we show that implementing all-to-all communication in k rounds can be done in n-node networks with roughly n2/k edges, and this bound is tight. Hence, sparsifying the core beyond just saving a fraction of the edges requires to relax the constraint on the time to simulate the congested clique. We show that, for p ≫ √log n/n, a random graph in Gn,p can, w.h.p., perform the all-to-all communication pattern in O(min{ 1/p2, np}) rounds. Finally, we show that if the core can emulate the congested clique in t rounds, then there exists a distributed MST construction algorithm performing in O(t log n) rounds. Hence, for t = O(1), our (deterministic) algorithm improves the best known (randomized) algorithm for constructing MST in core-periphery networks by a factor Θ(log n).
AB - The core-periphery network architecture proposed by Avin et al. [ICALP 2014] was shown to support fast computation for many distributed algorithms, while being much sparser than the congested clique. For being efficient, the core-periphery architecture is however bounded to satisfy three axioms, among which is the capability of the core to emulate the clique, i.e., to implement the all-to-all communication pattern, in O(1) rounds in the CONGEST model. In this paper, we show that implementing all-to-all communication in k rounds can be done in n-node networks with roughly n2/k edges, and this bound is tight. Hence, sparsifying the core beyond just saving a fraction of the edges requires to relax the constraint on the time to simulate the congested clique. We show that, for p ≫ √log n/n, a random graph in Gn,p can, w.h.p., perform the all-to-all communication pattern in O(min{ 1/p2, np}) rounds. Finally, we show that if the core can emulate the congested clique in t rounds, then there exists a distributed MST construction algorithm performing in O(t log n) rounds. Hence, for t = O(1), our (deterministic) algorithm improves the best known (randomized) algorithm for constructing MST in core-periphery networks by a factor Θ(log n).
UR - http://www.scopus.com/inward/record.url?scp=84996899203&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/978-3-319-48314-6_20
DO - https://doi.org/10.1007/978-3-319-48314-6_20
M3 - منشور من مؤتمر
SN - 9783319483139
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 307
EP - 322
BT - Structural Information and Communication Complexity - 23rd International Colloquium, SIROCCO 2016, Revised Selected Papers
A2 - Suomela, Jukka
PB - Springer Verlag
T2 - 23rd International Colloquium on Structural Information and Communication Complexity, SIROCCO 2016
Y2 - 19 July 2016 through 21 July 2016
ER -