Solving ridge regression using sketched preconditioned SVRG

Alon Gonen, Francesco Orabona, Shai Shalev-Shwartz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We develop a novel preconditioning method for ridge regression, based on recent linear sketching methods. By equipping Stochastic Variance Reduced Gradient (SVRG) with this preconditioning process, we obtain a significant speed-up relative to fast stochastic methods such as SVRG, SDCA and SAG.

Original languageEnglish
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsKilian Q. Weinberger, Maria Florina Balcan
Pages2102-2111
Number of pages10
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: 19 Jun 201624 Jun 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume3

Conference

Conference33rd International Conference on Machine Learning, ICML 2016
Country/TerritoryUnited States
CityNew York City
Period19/06/1624/06/16

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Computer Networks and Communications

Cite this