Small energy Ginzburg–Landau minimizers in R3

Etienne Sandier, Itai Shafrir

Research output: Contribution to journalArticlepeer-review

Abstract

We prove that a local minimizer of the Ginzburg–Landau energy in R3 satisfying the condition liminfR→∞E(u;BR)Rln⁡R<2π must be constant. The main tool is a new sharp η-ellipticity result for minimizers in dimension three that might be of independent interest.

Original languageEnglish
Pages (from-to)3946-3964
Number of pages19
JournalJournal of Functional Analysis
Volume272
Issue number9
DOIs
StatePublished - 1 May 2017

Keywords

  • Ginzburg–Landau Energy
  • Local minimizers

All Science Journal Classification (ASJC) codes

  • Analysis

Fingerprint

Dive into the research topics of 'Small energy Ginzburg–Landau minimizers in R3'. Together they form a unique fingerprint.

Cite this