TY - JOUR
T1 - Size-resolved atmospheric ice-nucleating particles during East Asian dust events
AU - Chen, Jingchuan
AU - Wu, Zhijun
AU - Chen, Jie
AU - Reicher, Naama
AU - Fang, Xin
AU - Rudich, Yinon
AU - Hu, Min
N1 - We sincerely thank our two referees for their valuable comments and constructive suggestions to improve the scientific and rigorous nature of our paper. We gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and MeteoInfoMap for the visualization and analysis used in this paper. This research has been supported by the National Natural Science Foundation of China (grant nos. 41875149, 42011530121, and 91844301) and by the Israel Science Foundation (grant no. 236/16). Author contributions - ZW designed and led the experiments. JCC and JC collected the samples during dust events. JCC, JC, XF, and MH maintained the apparatuses and collected the dataset. The measurements and analysis of field samples were performed by JCC under the guidance of ZW and with the help of JC. All authors discussed the results and contributed to the writing of this paper. JCC prepared the manuscript with contributions from all co-authors. ZW, JC, NR, YR, and MH proofread and helped improve earlier versions of the paper.
PY - 2021/3/8
Y1 - 2021/3/8
N2 - Asian dust is an important source of atmospheric ice-nucleating particles (INPs). However, the freezing activity of airborne Asian dust, especially its sensitivity to particle size, is poorly understood. In this study we report the first INP measurement of size-resolved airborne mineral dust collected during East Asian dust events. The measured total INP concentrations in the immersion mode ranged from 10(-2) to 10(2) L-1 in dust events at temperatures between 25 and 5 degrees C. The average contributions of heat-sensitive INPs at three temperatures, -10, 15, and 20 degrees C, were 81 +/- 12 %, 70 +/- 15 %, and 38 +/- 21 %, respectively, suggesting that proteinaceous biological materials have a substantial effect on the ice nucleation properties of Asian airborne mineral dust at high temperatures. The dust particles which originated from China's northwest deserts are more efficient INPs compared to those from northern regions. In general, there was no significant difference in the ice nucleation properties between East Asian dust particles and other regions in the world. An explicit size dependence of both INP concentration and surface ice-active-site density was observed. The nucleation efficiency of dust particles increased with increasing particle size, while the INP concentration first increased rapidly and then leveled, due to the significant decrease in the number concentration of larger particles. A new set of parameterizations for INP activity based on size-resolved nucleation properties of Asian mineral dust particles were developed over an extended temperature range (35 to 6 degrees C). These size-dependent parameterizations require only particle size distribution as input and can be easily applied in models.
AB - Asian dust is an important source of atmospheric ice-nucleating particles (INPs). However, the freezing activity of airborne Asian dust, especially its sensitivity to particle size, is poorly understood. In this study we report the first INP measurement of size-resolved airborne mineral dust collected during East Asian dust events. The measured total INP concentrations in the immersion mode ranged from 10(-2) to 10(2) L-1 in dust events at temperatures between 25 and 5 degrees C. The average contributions of heat-sensitive INPs at three temperatures, -10, 15, and 20 degrees C, were 81 +/- 12 %, 70 +/- 15 %, and 38 +/- 21 %, respectively, suggesting that proteinaceous biological materials have a substantial effect on the ice nucleation properties of Asian airborne mineral dust at high temperatures. The dust particles which originated from China's northwest deserts are more efficient INPs compared to those from northern regions. In general, there was no significant difference in the ice nucleation properties between East Asian dust particles and other regions in the world. An explicit size dependence of both INP concentration and surface ice-active-site density was observed. The nucleation efficiency of dust particles increased with increasing particle size, while the INP concentration first increased rapidly and then leveled, due to the significant decrease in the number concentration of larger particles. A new set of parameterizations for INP activity based on size-resolved nucleation properties of Asian mineral dust particles were developed over an extended temperature range (35 to 6 degrees C). These size-dependent parameterizations require only particle size distribution as input and can be easily applied in models.
U2 - https://doi.org/10.5194/acp-21-3491-2021
DO - https://doi.org/10.5194/acp-21-3491-2021
M3 - مقالة
SN - 1680-7316
VL - 21
SP - 3491
EP - 3506
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 5
ER -