TY - GEN
T1 - Single Layer Predictive Normalized Maximum Likelihood for Out-of-Distribution Detection
AU - Bibas, Koby
AU - Feder, Meir
AU - Hassner, Tal
N1 - Publisher Copyright: © 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Detecting out-of-distribution (OOD) samples is vital for developing machine learning based models for critical safety systems. Common approaches for OOD detection assume access to some OOD samples during training which may not be available in a real-life scenario. Instead, we utilize the predictive normalized maximum likelihood (pNML) learner, in which no assumptions are made on the tested input. We derive an explicit expression of the pNML and its generalization error, denoted as the regret, for a single layer neural network (NN). We show that this learner generalizes well when (i) the test vector resides in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, or (ii) the test sample is far from the decision boundary. Furthermore, we describe how to efficiently apply the derived pNML regret to any pretrained deep NN, by employing the explicit pNML for the last layer, followed by the softmax function. Applying the derived regret to deep NN requires neither additional tunable parameters nor extra data. We extensively evaluate our approach on 74 OOD detection benchmarks using DenseNet-100, ResNet-34, and WideResNet- 40 models trained with CIFAR-100, CIFAR-10, SVHN, and ImageNet-30 showing a significant improvement of up to 15.6% over recent leading methods.
AB - Detecting out-of-distribution (OOD) samples is vital for developing machine learning based models for critical safety systems. Common approaches for OOD detection assume access to some OOD samples during training which may not be available in a real-life scenario. Instead, we utilize the predictive normalized maximum likelihood (pNML) learner, in which no assumptions are made on the tested input. We derive an explicit expression of the pNML and its generalization error, denoted as the regret, for a single layer neural network (NN). We show that this learner generalizes well when (i) the test vector resides in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, or (ii) the test sample is far from the decision boundary. Furthermore, we describe how to efficiently apply the derived pNML regret to any pretrained deep NN, by employing the explicit pNML for the last layer, followed by the softmax function. Applying the derived regret to deep NN requires neither additional tunable parameters nor extra data. We extensively evaluate our approach on 74 OOD detection benchmarks using DenseNet-100, ResNet-34, and WideResNet- 40 models trained with CIFAR-100, CIFAR-10, SVHN, and ImageNet-30 showing a significant improvement of up to 15.6% over recent leading methods.
UR - http://www.scopus.com/inward/record.url?scp=85129930278&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - Advances in Neural Information Processing Systems
SP - 1179
EP - 1191
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -