Similarities and Differences between Site-Selective Acylation and Phosphorylation of Amphiphilic Diols, Promoted by Nucleophilic Organocatalysts Decorated with Outer-Sphere Appendages

Or Fleischer, Tom Targel, Fatma Saady, Moshe Portnoy

Research output: Contribution to journalArticlepeer-review

Abstract

We demonstrated recently that organocatalysts, based on a nucleophilic core (N-alkylimidazole or 4-aminopyridine) and decorated with an extensive secondary-sphere envelope (connected to the core through a benzyl substituent), strongly affect the site selectivity in acylation and phosphorylation of amphiphilic diols, sometimes entirely overriding the innate predisposition of the substrate. Preliminary studies pointed out that, despite some similarities, there are differences between the two transformations, regarding the influence of various catalyst features on the selectivity. To fully elucidate this, extended families of organocatalysts of the said design were examined, activity- and selectivity-wise, in the abovementioned transformations of model alcohol and amphiphilic diol substrates. A comparison of the influence of the catalyst design on the two reactions revealed that while the inductive electron donation of the o,o-dialkoxybenzyl substituent of the core, combined with the catalytic intermediate-stabilizing influence of some of the secondary-sphere components, causes an increase in the catalyst activity in both reactions and in the site selectivity in phosphorylation, its effect on the site selectivity in acylation is opposite. On the other hand, the lipophilicity of the secondary-sphere appendages improves the apolar site-favoring selectivity in both reactions. Thus, both factors work in concert in phosphorylation, but in opposite directions in acylation.

Original languageEnglish
Article number361
JournalCatalysts
Volume13
Issue number2
DOIs
StatePublished - Feb 2023

Keywords

  • acylation
  • alcohols
  • organocatalysis
  • phosphorylation
  • secondary-sphere interactions
  • site selectivity

All Science Journal Classification (ASJC) codes

  • General Environmental Science
  • Catalysis
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Similarities and Differences between Site-Selective Acylation and Phosphorylation of Amphiphilic Diols, Promoted by Nucleophilic Organocatalysts Decorated with Outer-Sphere Appendages'. Together they form a unique fingerprint.

Cite this