Abstract
We aimed to determine whether 80 kVp conventional nonenhanced head CT scans have better gray-white matter contrast than standard 120 kVp scans performed on the same patients. Thirty head CT scans acquired at 80 kVp (CT dose index [CTDI]vol 46) were compared to prior studies in the same patients performed at 120 kVp (CTDIvol 59). Signal (Hounsfield units [HU]), noise (sd HU), and contrast-to-noise ratio per dose (CNRD) were assessed in multiple cerebral gray and white matter regions of interest. A noise correction factor was used to compensate for scanning at different CTDIvol values. Average gray matter signal at 80 kVp and 120 kVP was 33.9 ± 3.5 HU and 29 ± 4.6 HU, respectively (p < 0.0001); the averages for white matter were 22.5 ± 3.1 HU and 21.6 ± 4.6 HU, respectively (p = 0.11). Corrected noise was 3 ± 0.6 and 2.7 ± 0.6, respectively, for gray matter (p = 0.0001), and 2.8 ± 0.6 and 2.6 ± 0.5, respectively, for white matter (p = 0.00001). The gray-white matter CNRD was 4.0 ± 1.2 at 80 kVp and 2.8 ± 1 at 120 kVp (p < 0.00001). Cerebral gray-white matter CNRD is increased by 40% at 80 kVp compared to conventional 120 kVp CT scans. These findings justify further clinical evaluation in the acute stroke setting.
Original language | English |
---|---|
Pages (from-to) | 1591-1594 |
Number of pages | 4 |
Journal | Journal of Clinical Neuroscience |
Volume | 21 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2014 |
Externally published | Yes |
Keywords
- Acute ischemic stroke
- Computed tomography
- Low dose
- Low kVp
All Science Journal Classification (ASJC) codes
- Surgery
- Neurology
- Clinical Neurology
- Physiology (medical)