Abstract
Self-morphing of thin plates could greatly impact the life if used in architectural context. Yet, so far, its realizations are limited to small-scale structures made of model materials. Here, new fabrication techniques are developed that turn two conventional construction materials—clay and fiber composites (FRP)—into smart, self-morphing materials, compatible with architectural needs. Controlled experiments verify the quantitative connection between the prescribed small-scale material structure and the global 3D surface, as predicted by the theory of incompatible elastic sheets. Scaling up of desired structures is demonstrated, including a method that copes with self-weight effects. Finally, a method for the construction of FRP surfaces with complex curvature distribution is presented, together with a software interface that allows the computation of the 3D surface for a given fiber pattern (the forward problem), as well as the fiber distribution required for a desired 3D shape (the inverse problem). This work shows the feasibility of large-scale self-morphing surfaces for architecture.
Original language | English |
---|---|
Article number | 2102171 |
Journal | Advanced Science |
Volume | 8 |
Issue number | 24 |
DOIs | |
State | Published - 22 Dec 2021 |
Keywords
- architecture
- fiber composites
- frustrated materials
- mold-less fabrication
- self-shaping
All Science Journal Classification (ASJC) codes
- General Engineering
- General Chemical Engineering
- Biochemistry, Genetics and Molecular Biology (miscellaneous)
- General Materials Science
- General Physics and Astronomy
- Medicine (miscellaneous)