Sexually Dimorphic Differentiation of a C. elegans Hub Neuron Is Cell Autonomously Controlled by a Conserved Transcription Factor

Esther Serrano-Saiz, Meital Oren-Suissa, Emily A. Bayer, Oliver Hobert

Research output: Contribution to journalArticlepeer-review

Abstract

Functional and anatomical sexual dimorphisms in the brain are either the result of cells that are generated only in one sex or a manifestation of sex-specific differentiation of neurons present in both sexes. The PHC neuron pair of the nematode C. elegans differentiates in a strikingly sex-specific manner. In hermaphrodites the PHC neurons display a canonical pattern of synaptic connectivity similar to that of other sensory neurons, but in males PHC differentiates into a densely connected hub sensory neuron/interneuron, integrating a large number of male-specific synaptic inputs and conveying them to both male-specific and sex-shared circuitry. We show that the differentiation into such a hub neuron involves the sex-specific scaling of several components of the synaptic vesicle machinery, including the vesicular glutamate transporter eat-4/VGLUT, induction of neuropeptide expression, changes in axonal projection morphology, and a switch in neuronal function. We demonstrate that these molecular and anatomical remodeling events are controlled cell autonomously by the phylogenetically conserved Doublesex homolog dmd-3, which is both required and sufficient for sex-specific PHC differentiation. Cellular specificity of dmd-3 action is ensured by its collaboration with non-sex-specific terminal selector-type transcription factors, whereas the sex specificity of dmd-3 action is ensured by the hermaphrodite-specific transcriptional master regulator of hermaphroditic cell identity tra-1, which represses the transcription of dmd-3 in hermaphrodite PHC. Taken together, our studies provide mechanistic insights into how neurons are specified in a sexually dimorphic manner.
Original languageEnglish
Pages (from-to)199-209
Number of pages11
JournalCurrent Biology
Volume27
Issue number2
Early online date5 Jan 2017
DOIs
StatePublished - 23 Jan 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Sexually Dimorphic Differentiation of a C. elegans Hub Neuron Is Cell Autonomously Controlled by a Conserved Transcription Factor'. Together they form a unique fingerprint.

Cite this