Sequencing educational content in classrooms using Bayesian knowledge tracing

Yossi Ben David, Avi Segal, Ya'akov Gal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


Despite the prevalence of e-learning systems in schools, most of today's systems do not personalize educational data to the individual needs of each student. This paper proposes a new algorithm for sequencing questions to students that is empir- ically shown to lead to better performance and engagement in real schools when compared to a baseline approach. It is based on using knowledge tracing to model students' skill acquisition over time, and to select questions that advance the student's learning within the range of the student's ca- pabilities, as determined by the model. The algorithm is based on a Bayesian Knowledge Tracing (BKT) model that incorporates partial credit scores, reasoning about multiple attempts to solve problems, and integrating item dificulty. This model is shown to outperform other BKT models that do not reason about (or reason about some but not all) of these features. The model was incorporated into a sequenc- ing algorithm and deployed in two classes in different schools where it was compared to a baseline sequencing algorithm that was designed by pedagogical experts. In both classes, students using the BKT sequencing approach solved more dificult questions and attributed higher performance than did students who used the expert-based approach. Students were also more engaged using the BKT approach, as deter- mined by their interaction time and number of log-ins to the system, as well as their reported opinion. We expect our approach to inform the design of better methods for se- quencing and personalizing educational content to students that will meet their individual learning needs.

Original languageEnglish
Title of host publicationLAK 2016 Conference Proceedings, 6th International Learning Analytics and Knowledge Conference - Enhancing Impact
Subtitle of host publicationConvergence of Communities for Grounding, Implementation, and Validation
Number of pages10
ISBN (Electronic)9781450341905
StatePublished - 25 Apr 2016
Event6th International Conference on Learning Analytics and Knowledge, LAK 2016 - Edinburgh, United Kingdom
Duration: 25 Apr 201629 Apr 2016

Publication series

NameACM International Conference Proceeding Series


Conference6th International Conference on Learning Analytics and Knowledge, LAK 2016
Country/TerritoryUnited Kingdom

All Science Journal Classification (ASJC) codes

  • Software
  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Computer Networks and Communications


Dive into the research topics of 'Sequencing educational content in classrooms using Bayesian knowledge tracing'. Together they form a unique fingerprint.

Cite this