Semiconductor Bow-Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules

Jiabin Cui, Somnath Koley, Yossef E. Panfil, Adar Levi, Nir Waiskopf, Sergei Remennik, Meirav Oded, Uri Banin

Research output: Contribution to journalArticlepeer-review

Abstract

Top-down fabricated nanoantenna architectures of both metallic and dielectric materials show powerful functionalities for Raman and fluorescence enhancement with relevance to single molecule sensing while inducing directionality of chromophore emission with implications for single photon sources. We synthesize the smallest bow-tie nanoantenna by selective tip-to-tip fusion of two tetrahedral colloidal quantum dots (CQDs) forming a dimer. While the tetrahedral monomers emit non-polarized light, the bow-tie architecture manifests nanoantenna functionality of enhanced emission polarization along the bow-tie axis, as predicted theoretically and revealed by single-particle spectroscopy. Theory also predicts the formation of an electric-field hotspot at the bow-tie epicenter. This is utilized for selective light-induced photocatalytic metal growth at that location, unlike growth on the free tips in dark conditions, thus demonstrating bow-tie dimer functionality as a photochemical reaction center.

Original languageEnglish
Pages (from-to)14467-14472
Number of pages6
JournalAngewandte Chemie - International Edition
Volume60
Issue number26
DOIs
StatePublished - 21 Jun 2021

Keywords

  • nanoantennas
  • nanocrystals
  • photocatalysis
  • polarization
  • quantum dots

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Catalysis

Fingerprint

Dive into the research topics of 'Semiconductor Bow-Tie Nanoantenna from Coupled Colloidal Quantum Dot Molecules'. Together they form a unique fingerprint.

Cite this