Semi automatic quantification of REM sleep without atonia in natural sleep environment

Daniel Possti, Shani Oz, Aaron Gerston, Danielle Wasserman, Iain Duncan, Matteo Cesari, Andrew Dagay, Riva Tauman, Anat Mirelman, Yael Hanein

Research output: Contribution to journalArticlepeer-review

Abstract

Polysomnography, the gold standard diagnostic tool in sleep medicine, is performed in an artificial environment. This might alter sleep and may not accurately reflect typical sleep patterns. While macro-structures are sensitive to environmental effects, micro-structures remain more stable. In this study we applied semi-automated algorithms to capture REM sleep without atonia (RSWA) and sleep spindles, comparing lab and home measurements. We analyzed 107 full-night recordings from 55 subjects: 24 healthy adults, 28 Parkinson’s disease patients (15 RBD), and three with isolated Rem sleep behavior disorder (RBD). Sessions were manually scored. An automatic algorithm for quantifying RSWA was developed and tested against manual scoring. RSWAi showed a 60% correlation between home and lab. RBD detection achieved 83% sensitivity, 79% specificity, and 81% balanced accuracy. The algorithm accurately quantified RSWA, enabling the detection of RBD patients. These findings could facilitate more accessible sleep testing, and provide a possible alternative for screening RBD.

Original languageEnglish
Article number341
Journalnpj Digital Medicine
Volume7
Issue number1
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Health Informatics
  • Computer Science Applications
  • Health Information Management

Cite this