TY - GEN
T1 - Self-testing of a single quantum device under computational assumptions
AU - Metger, Tony
AU - Vidick, Thomas
PY - 2021/2/4
Y1 - 2021/2/4
N2 - Self-testing is a method to characterise an arbitrary quantum system based only on its classical input-output correlations, and plays an important role in device-independent quantum information processing as well as quantum complexity theory. Prior works on self-testing require the assumption that the system’s state is shared among multiple parties that only perform local measurements and cannot communicate. Here, we replace the setting of multiple non-communicating parties, which is difficult to enforce in practice, by a single computationally bounded party. Specifically, we construct a protocol that allows a classical verifier to robustly certify that a single computationally bounded quantum device must have prepared a Bell pair and performed single-qubit measurements on it, up to a change of basis applied to both the device’s state and measurements. This means that under computational assumptions, the verifier is able to certify the presence of entanglement, a property usually closely associated with two separated subsystems, inside a single quantum device. To achieve this, we build on techniques first introduced by Brakerski et al. (2018) and Mahadev (2018) which allow a classical verifier to constrain the actions of a quantum device assuming the device does not break post-quantum cryptography.
AB - Self-testing is a method to characterise an arbitrary quantum system based only on its classical input-output correlations, and plays an important role in device-independent quantum information processing as well as quantum complexity theory. Prior works on self-testing require the assumption that the system’s state is shared among multiple parties that only perform local measurements and cannot communicate. Here, we replace the setting of multiple non-communicating parties, which is difficult to enforce in practice, by a single computationally bounded party. Specifically, we construct a protocol that allows a classical verifier to robustly certify that a single computationally bounded quantum device must have prepared a Bell pair and performed single-qubit measurements on it, up to a change of basis applied to both the device’s state and measurements. This means that under computational assumptions, the verifier is able to certify the presence of entanglement, a property usually closely associated with two separated subsystems, inside a single quantum device. To achieve this, we build on techniques first introduced by Brakerski et al. (2018) and Mahadev (2018) which allow a classical verifier to constrain the actions of a quantum device assuming the device does not break post-quantum cryptography.
UR - http://www.scopus.com/inward/record.url?scp=85107853561&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ITCS.2021.19
DO - 10.4230/LIPIcs.ITCS.2021.19
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 12th Innovations in Theoretical Computer Science Conference, ITCS 2021
A2 - Lee, James R.
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 12th Innovations in Theoretical Computer Science Conference, ITCS 2021
Y2 - 6 January 2021 through 8 January 2021
ER -