Secure Group Testing

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The principal mission of Group Testing (GT) is to identify a small subset of 'defective' items from a large population, by grouping items into as little as possible test pools. The test outcome of a pool is positive if it contains at least one defective item, and is negative otherwise. GT algorithms are utilized in numerous applications, and in most of them the privacy of the tested subjects, namely, whether they are defective or not, is critical. In this paper, we consider a scenario where there is an eavesdropper (Eve) which is able to observe a subset of the GT outcomes (pools). We propose a new non-adaptive Secure Group Testing (SGT) algorithm based on information theoretic principles, which keeps the eavesdropper ignorant regarding the items' status. Specifically, when the fraction of tests observed by Eve is 0 ≤ δ < 1, we prove that the number of tests required for both correct reconstruction at the legitimate user (with high probability) and negligible mutual information at Eve's side is 1/1-δ times the number of tests required with no secrecy constraint.

Original languageEnglish
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
Pages1391-1395
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - 10 Aug 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: 10 Jul 201615 Jul 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August

Conference

Conference2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period10/07/1615/07/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Secure Group Testing'. Together they form a unique fingerprint.

Cite this