Abstract
We design an algorithm which finds an ε-approximate stationary point (with k∇F(x)k ≤ ε) using O(ε−3) stochastic gradient and Hessian-vector products, matching guarantees that were previously available only under a stronger assumption of access to multiple queries with the same random seed. We prove a lower bound which establishes that this rate is optimal and—surprisingly—that it cannot be improved using stochastic pth order methods for any p ≥ 2, even when the first p derivatives of the objective are Lipschitz. Together, these results characterize the complexity of non-convex stochastic optimization with second-order methods and beyond. Expanding our scope to the oracle complexity of finding (ε, γ)-approximate second-order stationary points, we establish nearly matching upper and lower bounds for stochastic second-order methods. Our lower bounds here are novel even in the noiseless case.
Original language | English |
---|---|
Pages (from-to) | 242-299 |
Number of pages | 58 |
Journal | Proceedings of Machine Learning Research |
Volume | 125 |
State | Published - 2020 |
Externally published | Yes |
Event | 33rd Conference on Learning Theory, COLT 2020 - Virtual, Online, Austria Duration: 9 Jul 2020 → 12 Jul 2020 |
Keywords
- Hessian-vector products
- Stochastic optimization
- non-convex optimization
- second-order methods
- variance reduction
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability