TY - JOUR
T1 - Search for an anomalous excess of charged-current quasielastic νe interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction
AU - Abratenko, P.
AU - An, R.
AU - Anthony, J.
AU - Arellano, L.
AU - Asaadi, J.
AU - Ashkenazi, A.
AU - Balasubramanian, S.
AU - Baller, B.
AU - Barnes, C.
AU - Barr, G.
AU - Basque, V.
AU - Bathe-Peters, L.
AU - Benevides Rodrigues, O.
AU - Berkman, S.
AU - Bhanderi, A.
AU - Bhat, A.
AU - Bishai, M.
AU - Blake, A.
AU - Bolton, T.
AU - Book, J. Y.
AU - Camilleri, L.
AU - Caratelli, D.
AU - Caro Terrazas, I.
AU - Cavanna, F.
AU - Cerati, G.
AU - Chen, Y.
AU - Cianci, D.
AU - Collin, G. H.
AU - Conrad, J. M.
AU - Convery, M.
AU - Cooper-Troendle, L.
AU - Crespo-Anadón, J. I.
AU - Del Tutto, M.
AU - Dennis, S. R.
AU - Detje, P.
AU - Devitt, A.
AU - Diurba, R.
AU - Dorrill, R.
AU - Duffy, K.
AU - Dytman, S.
AU - Eberly, B.
AU - Ereditato, A.
AU - Evans, J. J.
AU - Fine, R.
AU - Fiorentini Aguirre, G. A.
AU - Fitzpatrick, R. S.
AU - Fleming, B. T.
AU - Foppiani, N.
AU - Franco, D.
AU - Piasetzky, E.
N1 - Publisher Copyright: © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.
PY - 2022/6/1
Y1 - 2022/6/1
N2 - We present a measurement of the νe-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasielastic (CCQE) events. The topology of such signal events has a final state with one electron, one proton, and zero mesons (1e1p). Multiple novel techniques are employed to identify a 1e1p final state, including particle identification that use two methods of Deep-Learning-based image identification and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 νe-candidate events in the reconstructed neutrino energy range of 200-1200 MeV, while 29.0±1.9(sys)±5.4(stat) are predicted when using νμ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a νe signal in MicroBooNE. A Δχ2 test statistic, based on the combined Neyman-Pearson χ2 formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% (2σ) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% (2σ) confidence level.
AB - We present a measurement of the νe-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasielastic (CCQE) events. The topology of such signal events has a final state with one electron, one proton, and zero mesons (1e1p). Multiple novel techniques are employed to identify a 1e1p final state, including particle identification that use two methods of Deep-Learning-based image identification and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 νe-candidate events in the reconstructed neutrino energy range of 200-1200 MeV, while 29.0±1.9(sys)±5.4(stat) are predicted when using νμ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a νe signal in MicroBooNE. A Δχ2 test statistic, based on the combined Neyman-Pearson χ2 formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% (2σ) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% (2σ) confidence level.
UR - http://www.scopus.com/inward/record.url?scp=85132320144&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.105.112003
DO - 10.1103/PhysRevD.105.112003
M3 - مقالة
SN - 2470-0010
VL - 105
JO - Physical Review D
JF - Physical Review D
IS - 11
M1 - 112003
ER -