Abstract
In synchronization problems, the goal is to estimate elements of a group from noisy measurements of their ratios. A popular estimation method for synchronization is the spectral method. It extracts the group elements from eigenvectors of a block matrix formed from the measurements. The eigenvectors must be projected, or 'rounded', onto the group. The rounding procedures are constructed ad hoc and increasingly so when applied to synchronization problems over non-compact groups. In this paper, we develop a spectral approach to synchronization over the non-compact group, the group of rigid motions of. We based our method on embedding into the algebra of dual quaternions, which has deep algebraic connections with the group. These connections suggest a natural rounding procedure considerably more straightforward than the current state of the art for spectral synchronization, which uses a matrix embedding of. We show by numerical experiments that our approach yields comparable results with the current state of the art in synchronization via the spectral method. Thus, our approach reaps the benefits of the dual quaternion embedding of while yielding estimators of similar quality.
Original language | English |
---|---|
Article number | iaae014 |
Journal | Information and Inference |
Volume | 13 |
Issue number | 3 |
DOIs | |
State | Published - 1 Sep 2024 |
Keywords
- applied non-commutative algebra
- dual quaternions
- group synchronization
- spectral algorithms
All Science Journal Classification (ASJC) codes
- Analysis
- Statistics and Probability
- Numerical Analysis
- Computational Theory and Mathematics
- Applied Mathematics