@inproceedings{3fb0bdfb6b1246b0882aad6d1b9f166c,
title = "Score-based Source Separation with Applications to Digital Communication Signals",
abstract = "We propose a new method for separating superimposed sources using diffusion-based generative models. Our method relies only on separately trained statistical priors of independent sources to establish a new objective function guided by maximum a posteriori estimation with an α-posterior, across multiple levels of Gaussian smoothing. Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature and the recovery of encoded bits from a signal of interest, as measured by the bit error rate (BER). Experimental results with RF mixtures demonstrate that our method results in a BER reduction of 95% over classical and existing learning-based methods. Our analysis demonstrates that our proposed method yields solutions that asymptotically approach the modes of an underlying discrete distribution. Furthermore, our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme, shedding additional light on its use beyond conditional sampling. The project webpage is available at https://alpha-rgs.github.io.",
author = "Tejas Jayashankar and Lee, {Gary C.F.} and Alejandro Lancho and Amir Weiss and Yury Polyanskiy and Wornell, {Gregory W.}",
note = "Publisher Copyright: {\textcopyright} 2023 Neural information processing systems foundation. All rights reserved.; 37th Conference on Neural Information Processing Systems, NeurIPS 2023 ; Conference date: 10-12-2023 Through 16-12-2023",
year = "2023",
language = "الإنجليزيّة",
series = "Advances in Neural Information Processing Systems",
editor = "A. Oh and T. Neumann and A. Globerson and K. Saenko and M. Hardt and S. Levine",
booktitle = "Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023",
}