Scattering by lossy anisotropic scatterers: A modal approach

N. Kossowski, Parry Y. Chen, Q. J. Wang, P. Genevet, Yonatan Sivan

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Scattering from anisotropic geometries of arbitrary shape is relatively difficult to interpret physically, involving the intricate interplay between material and geometric effects. Insights into complex scattering mechanisms are often enabled by modal methods that decompose the response into the well-understood multipolar resonances. Here, we extend the generalized normal mode expansion to lossy and anisotropic scatterers. Unique to the method is that it decomposes the total response of any anisotropic resonator into the modes of the corresponding isotropic resonator. This disentangles the material and geometric contributions to the scattering of any anisotropic resonator. Furthermore, the method can identify absorption and scattering resonances with separate sets of modes. We illustrate our method by considering an infinitely long cylinder with concentric metallic/dielectric layers, targeting the complex case of an effective hyperbolic response. We show that by scanning the material composition of the hyperbolic medium, we can achieve any desired scattering effect, including backscattering cancellation.

    Original languageAmerican English
    Article number113104
    JournalJournal of Applied Physics
    Volume129
    Issue number11
    DOIs
    StatePublished - 21 Mar 2021

    All Science Journal Classification (ASJC) codes

    • General Physics and Astronomy

    Fingerprint

    Dive into the research topics of 'Scattering by lossy anisotropic scatterers: A modal approach'. Together they form a unique fingerprint.

    Cite this