ROI Maximization in Stochastic Online Decision-Making

Nicolò Cesa-Bianchi, Tommaso Cesari, Yishay Mansour, Vianney Perchet

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce a novel theoretical framework for Return On Investment (ROI) maximization in repeated decision-making. Our setting is motivated by the use case of companies that regularly receive proposals for technological innovations and want to quickly decide whether they are worth implementing. We design an algorithm for learning ROI-maximizing decision-making policies over a sequence of innovation proposals. Our algorithm provably converges to an optimal policy in class Π at a rate of order min {1/(N ∆2), N−1/3}, where N is the number of innovations and ∆ is the suboptimality gap in Π. A significant hurdle of our formulation, which sets it aside from other online learning problems such as bandits, is that running a policy does not provide an unbiased estimate of its performance.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
Pages9152-9166
Number of pages15
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume11

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'ROI Maximization in Stochastic Online Decision-Making'. Together they form a unique fingerprint.

Cite this