Robust icephobic coating based on the spiky fluorinated Al2O3 particles

Anton Starostin, Vladimir Strelnikov, Viktor Valtsifer, Irina Lebedeva, Irina Legchenkova, Edward Bormashenko

Research output: Contribution to journalArticlepeer-review

Abstract

Omniphobic and icephobic twin-scale surfaces based on the "urchin"-like fluorinated Al2O3 particles are presented. Combined effect of hierarchical topography and fluorination supplied to the surfaces omniphobic and icephobic properties. The study of the stability of the Cassie wetting state is reported. High apparent contact angles were accompanied with the low contact angle hysteresis and high stability of the Cassie air trapping wetting state. Time delay of the ice crystallization as high as [Formula: see text] min was established when compared to the ice formation on flat aluminum and non-fluorinated "urchin"-like surfaces. Crystallized water droplets formed on the reported nano-structured surfaces were easily blown out by the air jet with the velocity of [Formula: see text] m/s, (which is markedly lower than that common for exploitation of aircrafts and turbines). Heated "urchin"-like surfaces completely restored their omniphobic and icephobic surfaces after thawing. Qualitative analysis of water freezing is supplied.

Original languageEnglish
Pages (from-to)5394
Number of pages1
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - 8 Mar 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Robust icephobic coating based on the spiky fluorinated Al2O3 particles'. Together they form a unique fingerprint.

Cite this